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The Sexual Selection of Endometriosis

Bernard Crespi and Natalie L. Dinsdale
Department of Biological Sciences, Simon Fraser University

We propose and evaluate a new theory for helping to explain the evolution of
endometriosis risk in humans. By this theory, endometriosis risk evolved in the context of
sexual selection by males for high, relatively female-biased expression of sexually
dimorphic and female-limited phenotypes associated with low testosterone and high
female reproductive fitness. The theory is supported by extensive data, showing that: (a)
endometriosis involves higher expression of major female-biasing genes, and lower
expression of major male-biasing genes, that orchestrate prenatal sexual differentiation;
(b) endometriosis and its correlates are associated with low prenatal and postnatal
testosterone, both of which have female-biasing effects on traits; (c) low prenatal and
postnatal testosterone, and endometriosis, are associated with relatively female-biased
phenotypic expression for a large suite of sexually dimorphic and sex-limited traits; (d)
relatively female-biased expression of these traits is commonly associated with higher
fertility and fecundity; (e) some traits, including female facial features, vocal pitch, and
breast size, fit with all of the predictions of the model, though they have yet to be studied
in relation to endometriosis; and (f) traits linked with low prenatal and postnatal
testosterone or high estradiol, and traits associated with endometriosis in humans, are
preferred by males across multiple species of non-human mammals. Risk and symptoms
of endometriosis thus appear to involve and represent, in part, maladaptive extremes of
sexually selected female-limited and sexually dimorphic traits.

Public Significance Statement
We describe evidence from genetics, hormones, morphology, behavior, and life
history that risk for endometriosis is associated with low testosterone. We also
describe how endometriosis involves “relatively female” expression for a large suite
of traits and that risk of this disorder appears to have evolved in the context of male
choice of females with endometriosis-associated traits that signal relatively high
reproductive capabilities. This work shows how human mate choice can lead to
maladaptive extremes of reproductive adaptations that manifest in symptoms of
disease and provides new insights relevant to the causes of endometriosis.
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The selection and evolution of adaptive traits
commonly involves tradeoffs between opposing
selective pressures whose effects are mediated by
ineluctable physical and temporal constraints

(Crespi & Go, 2015; Williams & Nesse, 1991). A
prominent form of tradeoffs is those involving sex-
ual selection and natural selection (Fisher, 1915).
By this process, sexual selection favors a trait that
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confers advantageswith regard to competitivemat-
ing and reproduction, via mate choice, intrasexual
competition, or both, which leads to increased or
enhanced trait expression. If, however, the trait
becomes too highly expressed, then it can interfere
with survival or other components of fitness,
resulting in a balance between sexual and natu-
ral selection.
Thepurposeof this article is todescribeandeval-

uate a new model, based on the interplay of sexual
and natural selection, for understanding the evolu-
tionary and behavioral basis of endometriosis. We
first describe endometriosis and its symptoms, its
proximatecauses andcorrelates, andprevious ideas
regarding itsultimate, evolutionarycauses.Second,
we explain the hypothesis proposed here for endo-
metriosis risk, and some of the findings that moti-
vated its development. We then list a series of
predictions that follow from the hypothesis and
evaluate themwithdata fromthe literature.

Endometriosis

Proximate, Physiological Factors

Endometriosis is defined by the presence of en-
dometrial tissue outside of the uterine cavity, usu-
ally in the peritoneal cavity, ovaries, fallopian
tubes, or rectovaginal area (Bulun et al., 2019;
Wanget al., 2020).Growth, inflammation,anddeg-
radation of displaced, as well as uterine, endome-
trial tissue is associated with dysmenorrhea
(menstrual pain due to strong uterine contractions),
menorrhagia (heavy menstrual bleeding), chronic
pelvic pain, and reduced fertility, to a degree that
varies frommild to severe. Endometriosis has been
reported in all human populations investigated for
this disorder, although its prevalence appears to
vary across populations, being relatively high in
Caucasian populations, subject to caveats associ-
atedwith ascertainment biases (Bougie et al., 2019;
Crespi, 2021).
The causes of endometriosis are enigmatic

(Bulun et al., 2019; Chapron et al., 2019). At the
physiological level, its effects are driven by exces-
sive local production of estrogen in proliferating
endometrosis tissue, at both uterine and extra-uter-
ine, ectopic sites, aswell ashigh levelsof inflamma-
tion in such tissues. The disorder is also
characterized by high levels of oxytocin (that
increase uterine contractility), low serum and ovar-
ian testosterone, and high follicle stimulating

hormone relative to luteinizing hormone (Dinsdale
& Crespi, 2021). Menarche occurs at a younger
than average age in typical-weightwomenwho de-
velop endometriosis, menstrual cycles are shorter
andmore regular, andmenopause is earlier (Day et
al., 2015; Gupta et al., 2015; Matalliotakis et al.,
2008;Nnoahamet al., 2012;Wei et al., 2016;Yasui
et al., 2015).
Endometriosis may be potentiated by retrograde

movement of endometrial cells from the uterus to
fallopian, peritoneal, and other sites (Sampson,
1925); however, most women experience retro-
grade flow, whereas only 5% to 10% develop the
disorder (Halme et al., 1984), so other factors must
be involved. Cells that develop into endometriotic
tissue may also reach extra-uterine sites via the ve-
nous circulation, or though displacement of stem
cells during prenatal sexual and genitourinary sys-
tem development (Sasson & Taylor, 2008; Yovich
et al., 2020). Currently, there is no cure for endome-
triosis, and treatments commonly involvepainmed-
ication, surgery, GnRH (Gonadotropin-Releasing
Hormone)-based therapies that stop menstruation,
or, usually inolderwomen,hysterectomy.

Ultimate, Evolutionary Factors

The evolutionary changes that potentiated en-
dometriosis risk in women evolved in other selec-
tive contexts and have given rise to the risks and
forms of this disorder, which involves reduced
health and fertility as secondary effects. These
changes, along the lineage from the chimp-human
ancestor to modern humans, involve a suite of
traits that are relevant to the development of endo-
metriosis and the selective pressures that, by the
hypotheses addressed here, are associated with it
(see also Dinsdale et al., 2021). These changes
include the following factors:
First, humans have evolved especially invasive

hemochorial placentation and deep trophoblast
invasion (Brosens et al., 2009;Crosley et al., 2013),
through selective processes that may involve
maternal-fetal conflicts (Haig, 1993) and selection
for large humanbrain size (Martin, 2003). The evo-
lution of more extensive endometrial proliferation
and menstruation (Clancy, 2009; Evans et al.,
2016; Jarrell, 2018; Strassmann, 1996), concomi-
tant to more-invasive placentation, has generated
higher menstrual activity which causes increased
potential for retrograde flow (movement of men-
strual blood and other tissues into the peritoneal
cavity, ovaries, or other sites), and high levels of
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inflammation duringmenstruation, given thatmen-
struation is inherently highly inflammatory. The
selection pressures involved in the evolution of
spontaneous decidualization andhighly developed,
copious menstruation in humans may involve
aspects of reproductive energetics and ecology,
maternal-fetal conflicts, preconditioning of the
uterus in preparation for implantation, or other fac-
tors (Brosens et al., 2009; Clancy, 2009; Emera et
al., 2012; Jarrell, 2018; Strassmann, 1996), that
remain matters of investigation. Whatever its
causes, highly developed menstruation represents
an important precondition for the evolution of en-
dometriosis, given that it involves greater retro-
grade flow and strong estrogen-driven stimulation
for rapidgrowthof endometrial tissue.
Second, deeper implantation and invasion of the

embryo and trophoblast into endometrial tissue, as
found in humans, also represent highly inflamma-
tory processes, that may also have contributed to
high inflammation in endometrial tissue (Dekel et
al., 2010;Pijnenborg, 2002).
Third, more extensive development of the uter-

ine musculature that facilitates parturition has
evolved inhumans, in associationwith the enlarged
cranium size of human neonates relative to the size
of the birth canal (Dunsworth & Eccleston, 2015;
Rosenberg, 1992). This phenotypic change may
potentiate strong and painful uterine contractions
duringmenstruation.
Fourth, reduced interbirth intervals, from about

six years to about three years, have evolved along
the human lineage (Hrdy, 2009; Nakahashi et al.,
2018), which have led to higher reproductive
rates, and probably also to higher variance in
female reproduction, which would increase the
opportunity for selection on female reproductive
phenotypes.
Fifth, the development with menarche of high

levels of gluteofemoral fat, and large permanent
breasts that harbor stores of fat, that are utilized for
the high energy demands of gestation and lactation
(Wells, 2010), have also evolved in humans and
may also function as indicators of high female
reproductivecapabilities.
Sixth, pronounced sexual dimorphism in facial

features, vocal pitch, and other steroid hormone
related traits have evolved along the human lineage
(Puts et al., 2012), and these traitsmayserveas indi-
rect indicatorsof female reproductivecapabilities.
Seventh, increased paternal care has evolved in

humans, which is expected to generate selective

conditions favoringmale choice of relatively fertile
and fecund females (Hrdy,2009).
Eighth, the evolution of higher levels of monog-

amy and guarding of females bymales has evolved
in humans (Schacht & Kramer, 2019); these traits
can select for male choice of females with high
nubility (youthful and recent sexual maturity), and
reproductive value (Lassek & Gaulin, 2019) who
can be reproductively “controlled” by males for
extendedperiodsof time (Hrdy,1997).
Ninth, the recent evolution of reduced hair, eye

and skin pigmentation in some populations, which
influences availability and metabolism of the key
reproductive nutrients vitamin D, folate, and cal-
cium (Parra, 2007; Jablonski&Chaplin, 2017), has
generated new phenotypic and genetic substrates
for sexual selection.
A final factor important to the current preva-

lence of endometriosis is evolutionary mismatch,
between adaptations to past environmental condi-
tions, and environments that have changed too
rapidly for selection and response to selection to
track them.By this hypothesis, the current notably
highprevalenceofendometriosis inwomen, about
5% to 10%, is driven in part by recent secular
trends towards earlier menarche and later age of
first reproduction, both ofwhich increase numbers
of the menstrual cycles that elevate the potential
for retrogradeflow effects and estrogenic stimula-
tion of endometrial tissue growth (Clancy, 2009;
Jarrell and Arendt-Nielsen, 2016; Scioscia et al.,
2019). This hypothesis is consistentwith epidemi-
ological data linking endometriosis risk with cor-
relates of numbers of menstruations (Scioscia et
al., 2019), although directionalities of causality
remain unclear because genes underlying endo-
metriosis are also pleiotropically associated with
earlier menarche (Ponomarenko et al., 2020). A
second environmental factor that likely potenti-
ates endometriosis risk is increasedexposure toes-
trogenic or anti-androgenic chemicals (e.g., Sirohi
et al., 2020). The presence of such mismatches
would be expected to exacerbate, rather than gen-
erate de novo, the symptoms and severity of endo-
metriosis. As such, mismatches are relevant to the
current prevalence and proximate causes of endo-
metriosis, but not to the evolution of endometrio-
sis risk along the human lineage. Data on
endometriosis or its strong correlates are needed
from hunter-gatherer or other traditional human
populations, to further evaluate hypotheses based
onmismatch.
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Sexual Selection of Endometriosis

Hypothesis for the Evolution of
Endometriosis Risk

Givenwhat isknownabout thephysiologyofen-
dometriosis, and the set of changes in phenotypes
along the human lineage, a simple, testable hypoth-
esis can be developed for how risk of this disorder
has evolved. We hypothesize that females were
subject to selection for increased expression of
female-limited and sexually dimorphic pheno-
types, such as wider hips with more gluteofemoral
fat, that increased their reproductive success. This
process represents natural selection on females, in
the context of reproductive ecology and physiol-
ogy. Such phenotypes, and their correlates, subse-
quently came to serve as indicators of increased
reproduction and reproductive potential, in the con-
text of social and sexual interactions among males
and females in one's local group. In such situations,
males were subject to selection for choice of
females, and more investment of resources in
females, that exhibited higher levels of these fit-
ness-related traits and their indicators (Figure 1).
This is a form of sexual selection because it
involves choice of mates. Once males began to
compete for females in thismanner, femaleswould,
in turn, havebeensubject towithin-sexcompetition
for acquiring relativelyhigh-fitness andhigh-provi-
sioning mates as well (DelPriore et al., 2017; Puts,

2010).By this process, females are subject to selec-
tion both in the context of their reproductive ecol-
ogy as mediated by such factors as energetics,
stress, and life history tradeoffs (Clancy, 2009), as
well as in thecontext ofmatechoicebymales.
The expected evolutionary response to sexual

selection by males for increases in female-biased
phenotypes associated with higher reproduction is
increases and elaboration of these traits. These
changes are propelled by both natural selection (for
female reproductive traits that increase fitness) and
sexual selection (for male choice of females with
higher expression of such traits). As the distribu-
tions of these traits shift, over evolutionary time, in
the “female” direction, the females in the forefront
—the female biased tail—of the distributionwould
exhibit relatively extreme levels of the salient phe-
notypes (Figure2).
Some such individuals thus come, after somepe-

riod of evolutionary time, to exhibit extreme
expression of these reproduction-related adapta-
tions that can becomemaladaptive and manifest as
symptomsofdisease that reducefitness. Sexual and
natural selection for “more-female” traits, and
higher reproduction, may then come to be more or
less balanced bynatural selection against reproduc-
tive problems and disease. This process essentially
representsFisher's (1915) originalmodel for sexual
selection, applied to human reproductive develop-
ment, physiology and behavior. The idea that
female “attractiveness” may be associated with

Figure 1
The Set of Processes Involved in the Hypothesis That Sexual Selection Has Mediated the
Evolution of Human Risk for Endometriosis

Note. Processes associated with sexual selection are shown in red. See the online article for the color version
of this figure.
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endometriosis, due to the joint dependence of these
twophenomenaon sex steroids,wasoriginally sug-
gested by Buggio and colleagues (2012), and is
specified, developed, extended, and tested here.
This hypothesis provides the first conceptual
framework, grounded in human evolutionary biol-
ogy and behavior, for understanding this enigmatic
disease.

Testing the Hypothesis

The predictions of the sexual selection hypothe-
sis for endometriosis fall into six major domains.
The predictions involve different sets of links
between endometriosis, endometriosis-associated
traits, sexual dimorphism, testosterone and estra-
diol, correlates of fitness, and male mate preferen-
ces, amonghumansandnon-humanmammals.
First, thehypothesis predicts that endometriosis

should be associated with shifts toward “more-
female” gene expression during early in utero
human sexual development. This hypothesis is
evaluated by determining whether endometriosis
in adult females is associated with higher expres-
sion of genes that exhibit “pro-female” and “anti-
male” effects in early fetal development, and
lower expression of genes that exhibit “anti-
female” and “pro-male” effects. This prediction is
predicated on the observation that although chro-
mosomal sex (XX and XY) is (aside from aneu-
ploidies) binary, the phenotypic expression of
sexually dimorphic quantitative traits varies con-
tinuouslywithin each sex.
Second, the hypothesis predicts that endocrino-

logical, physiological and morphological traits
associated with endometriosis should be sexually
dimorphic (differing in mean between the sexes),

or female limited (found only among females), and
that women with endometriosis should show rela-
tive female biases in the development and expres-
sion of these traits. These female biases should, in
turn, tend to be associated with relatively low pre-
natal and postnatal testosterone, relatively high
effects fromestradiol, or both.
Third, the hypothesis predicts that endometrio-

sis-associated traits andgenotypes should be asso-
ciated with higher reproductive fitness (and
correlates thereof), even though endometriosis
itself, as a maladaptive condition, tends to reduce
fitness overall. This prediction evaluates the idea
that endometriosis involves having “too high”
expression of traits, and “too many” alleles, for
causesof higher reproduction,where reproduction
mayspecifically include fecundity, fertility, repro-
ductive value, nubility or some combination of
these correlates offitness.
Fourth, the hypothesis predicts thatmany endo-

metriosis-associated traits should tend to be pre-
ferred by males, because they are usually linked
with higher female reproduction. Such preferen-
ces should tend to be expressed cross culturally in
humans and should be expressed at higher levels
inpopulationswhereendometriosis ismorepreva-
lent. Some of the traits preferred by males may be
directly related to female reproduction and repro-
ductive value (e.g., low waist to hip ratio, WHR),
whereasother such traits (suchas relatively female
facial features or vocal pitch) may represent indi-
rect indicators of reproductive potential due to
their developmental and functional links with lev-
els of steroid hormones such as testosterone and
estradiol.
Fifth, the hypothesis predicts that female traits

that are preferred by males should be mediated in

Figure 2
Endometriosis Is Characterized by Relatively Female Expression for a Wide Range of
Sexually Dimorphic Traits

Note. See text and Table 1 for details. See the online article for the color version of this figure.
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their development and expression by relatively low
testosterone and high estradiol (prenatal, postnatal
or both). This prediction applies specifically to
female-limited or sexually dimorphic traits, such as
vocal pitch, facial sexual dimorphism, and relative
breast size, that owing to current lack of available
published evidence, are not known to be linked
with higher endometriosis risk but are expected to
be, according to thehypothesis.
Sixth, non-human male mammals are expected

to exhibit mate choice for females expressing rela-
tively “more-female” traits, and indicators of
higher reproduction, and these indicators are pre-
dicted to be associated with correlates of endome-
triosis. Such correlates include for example low
prenatal and postnatal testosterone, high estradiol,
early onset of reproduction, fast cycling, and endo-
metriosis-related reproductive physiology, such as
fast ovarian aging. Conversely, males of such spe-
cies are expected to exhibit preferences against
traits that indicate relatively high effects of testos-
terone in females. As for humans, females of non-
human animals who express more endometriosis-
associated traits are also predicted to show higher
fecundityorother correlatesoffitness.

Evaluating the Predictions

Endometriosis Should Involve Relative Female
Biases to the Early In Utero Development of
Sexually Dimorphic, and Female Limited,
Phenotypes

The development of morphological and physio-
logical sexdifferences betweenhuman females and
males begins prenatally, during weeks 6–8 after
conception, under the influences of SRY (Sex-
determiningRegionY) gene expression and higher
prenatal testosterone inmales than in females (Rey
et al., 2020). These changes occur in conjunction
with differential patterns of gene expression in the
two sexes that orchestrate loss of the Müllerian
ducts in males, loss of the Wolffian ducts in
females, and a large suite of concomitant divergent
developmental changes.During early sexual devel-
opment, somegenes thus exert “anti-male”or “pro-
female,” or oppositely, “anti-female” and “pro-
male” effects, in thedeveloping fetus.
Genes with “pro-” or “anti-” male or female

effects, like genes that induce high versus low lev-
els of testosterone, guide the early development of
sexually dimorphic traits, as well as functioning in
aspects of adult reproductive physiology including

the maintenance of ovarian versus testicular func-
tions (e.g.,Murphey,2010).Wesurveyed the litera-
ture on the primary genes underlying early prenatal
human sexual development (e.g., Figure 4 inReyet
al., 2020) to ascertain which genes had clear “pro-
or anti-male” and “pro or anti-female” effects, as
evidenced by data from knockouts, losses of func-
tion, duplications, or partial or total XX to XY or
XY to XX sex reversals. Data were available on
expression in endometriosis versus controls for
seven such mammalian genes that are centrally
involved in early human sexual development
(Figure 3). The hypothesis addressed here thus pre-
dicts that endometriosis (and the differential expres-
sion of genes that characterize it) should be
associated with higher expression, during early sex-
ual development, of geneswith “anti-male” or “pro-
female” effects and lower expression of genes with
“anti-female”or“pro-male”effects.

SOX9 (SRY-BoxTranscriptionFactor 9). Expres-
sion of the “anti-female” gene SOX9 is activated
by the male-determining factor SRY, and its ab-
sence results inXYmale to female sex reversal in
mammals (Lavery et al., 2011). Expression of
this gene also activates expression ofAMH (anti-
müllerian hormone; De Santa Barbara et al.,
1998) and prevents male to female reprogram-
ming of the testis into ovaries. In females, SOX9
expression is repressed, by WNT4 (Wingless-
Type MMTV Integration Site Family, Member
4), FOXL2 (Forkhead Box L2) and CTNNB1
(Catenin Beta 1; Maatouk et al., 2008; Suzuki et
al., 2015). Inwomenwith ovarian endometriosis,
expression of SOX9 is substantially reduced in
endometriotic tissue (Zhao et al., 2018). The
SOX9 gene also regulates expression of the gene
TRPS1 (Transcriptional Repressor GATABind-
ing 1), which is associated with endometriosis
risk at the genome-wide significance level (Rah-
mioglu et al., 2018) and which shows polymor-
phisms that mediate tanning response (Visconti
et al., 2018); SOX9 is also upregulated after
UVB exposure, leading to increased production
of melanin (Passeron et al., 2007). As described
in more detail below, tanning responses are
reduced among women with endometriosis
(Kvaskoff et al., 2009; Somigliana et al., 2010).

Anti-Müllerian Hormone. Expression ofAMH,
an “anti-female” gene, drives regression of the
Müllerian ducts in early mammalian development,
and the ducts are maintained inmale knockouts for
the gene (Roly et al., 2018). In cycling women,
AMH is produced by ovarian granulosa cells and
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regulates the recruitment of follicles. Production of
AMH in the ovaries is notably reduced among
females with endometriosis (Dong et al., 2019;
Kasapoglu et al., 2018;Muzii et al., 2018; Roman-
ski et al., 2019; Sánchez-Ferrer et al., 2019). By
contrast, AMH levels are substantially increased
among females with PCOS, who also exhibit high
levels of ovarian androgens and increased serum
testosterone (e.g., Dinsdale & Crespi, 2021;
Dumont et al., 2015; Garg & Tal, 2016; Sahmay et
al., 2014). AMHhas also been suggested as a treat-
ment for endometriosis, given its ability to inhibit
the proliferation of endometrial cells in vitro (Bora-
hayet al., 2013;Signorile et al., 2014).
FOXL2. The “anti-male” geneFOXL2antago-

nizes the effects of “pro-male” gene SOX9, medi-
ates development of the uterus, and positively
regulates follicle recruitment and expression of
GnRH and FSHB (Follicle Stimulating Hormone
Subunit Beta; Murphy, 2010; Verdin & De Baere,
2012).KnockoutsofFOXL2causepartial (inmice),
or complete (in goats) female to male sex reversals
(Uhlenhaut et al., 2009), and reduced expression in
humanscommonly results inprematureovarian fail-
ure (Verdin&DeBaere, 2012) and increased levels

of androgens (Murphy, 2010). Compared with con-
trols, expressionofFOXL2 is increased about three-
fold inendometrial tissueofwomenwithendometri-
osis,where it appears to contribute to tissue prolifer-
ation (Governiniet al., 2014).

WNT4. The gene WNT4 mediates mamma-
lian sex determination and female gonad develop-
ment. Deletion of the gene causes masculinization
of XX female mice, and its deficiency causes
increased testosteroneproduction in females (Heik-
kilä et al., 2005).By contrast, duplication ofWNT4
causes sex reversal of XY males (Jordan et al.,
2003). WNT4 thus functions as an “anti-male”
gene in early development. In women with endo-
metriosis,WNT4expression is increased inovarian
granulosa cells (Sanchez et al., 2014); it also shows
higher expression in a rat model of endometriosis
(deMattos et al., 2016).By contrast, in endometrial
tissue, WNT4 expression is lower in women with
endometriosis than in controls (Liang et al., 2016;
Logan et al., 2018). Lower WNT4 in this tissue is
associated with higher testosterone production,
which contributes to the proliferation of endome-
trial cells via its aromatization to estradiol (Huhti-
nenet al., 2014).As such, bothhigher productionof

Figure 3
Endometriosis Involves Higher Expression, During Adulthood, of a Set of Core
Early-Developmental “Pro-Female/Anti-Male” Genes (in Red), and Lower
Expression of “Anti-Female/Pro-Male” Genes (in Blue); Jointly, These Genes
Guide Early Sexual Differentiation and Development

Note. See the online article for the color version of this figure.
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WNT4 in ovaries, leading to low ovarian testoster-
one as found in endometriosis (Ono et al., 2014),
and higher expression of this gene in endometrial
tissue (leading to higher local production of estra-
diol), contribute to the symptoms of endometriosis.
Finally, theWNT4 gene also harbors SNPs that are
significantly associated with endometriosis, from
GWAS results, at the genome-wide significant
level (Rahmioglu et al., 2014, 2018), although
whether and how these SNPs affectWNT4 expres-
sion remainsunknown.
RSPO1 (R-spondin 1). ThegeneRSPO1 inter-

acts withWNT4 to antagonize SOX9 in early sex-
ual development. Its loss of function causesXXsex
reversal in humans (Biason-Lauber, 2012; Clevers
& Nusse, 2012; Parma et al., 2006) and Müllerian
duct agenesis in mice (Miyamoto et al., 1997); it
thus represents a “pro-female” gene in its develop-
mental effects. RSPO1 also shows increased
expression in endometriosis, in association with a
general increase inWNT pathway activation in en-
dometrial tissue of affected women (Hundt, 2016;
Matsuzaki et al., 2014).
CTNNB1 (Catenin beta 1). This gene codes

for b-catenin, a protein that mediates transcription
of other genes and cell-cell adhesion. In early fetal
development, b-catenin antagonizes the effects of
SOX9 and acts as an “anti-testis” and “pro-ovary”
signaling molecule; its experimental overexpres-
sion causesXYsex reversalwith loss of expression
of SOX9 and AMH and increased expression of
WNT4, FOXL2, and FST (Maatouk et al., 2008).
b-catenin expression is increased in ectopic endo-
metrial tissue in women with endometriosis (Paz-
hohan et al., 2018, 2021;Xiong et al., 2016), where
it promotescell proliferationandmigration (Matsu-
zaki et al., 2014).
FST (Follistatin). Follistatin is anactivin-bind-

ing protein that is encoded by the FST gene. Its
expression in early prenatal development in
females inhibits the formation of the coelomic ves-
sel, a male-specific artery that is required for testis
development; FST-null XX mice thus undergo a
partial sex reversal (Yao et al., 2004). FST also
exerts “pro-ovary” effects that enhance oocyte sur-
vival, and it is positively regulated by FOXL2 and
WNT4 (Kashimada et al., 2011). Levels of follista-
tin are higher in serum and ectopic endometriumof
women with endometriosis (Florio et al., 2009;
Torres et al., 2007).
Taken together, these major mammalian genes

affecting early sexual development, which also
exert important reproductive functions in adult

females or males, demonstrate a pattern of “anti-
female” and “pro-male” genes being underex-
pressed in endometriosis (SOX9 and AMH), and
“anti-male” and “pro-female” genes (FOXL2,
WNT4,RSPO1,CTNNB1andFST)beingoverex-
pressed or, when underexpressed (WNT4 in endo-
metrial tissue) promoting increased endometrial
proliferation, a hallmark of endometriosis. These
findings thus support the hypothesis that endome-
triosis is characterizedbya female bias to early sex-
ual development andadult reproductive functions.

Endometriosis and Endometriosis-Associated
Traits Should Involve Relative Female Biases
to Sexually Dimorphic Phenotypes

This hypothesis predicts that for phenotypes
present in both sexes, females with endometriosis
should exhibit phenotype distributions, for repro-
duction-related traits, that are shifted in the female
direction, away from males, compared with
femaleswithout endometriosis (Figure2).Weeval-
uate this prediction here for endocrine, physiologi-
cal andmorphological phenotypes,with the overall
results summarized inTable1.

Prenatal Testosterone. Early prenatal testos-
terone in the fetus is problematic to measure
directly in humans, so twoproxies of its levels have
been extensively used. First, anogenital distance
(AGD), from the anus to landmarks on the genita-
lia, is substantially longer in males than in females,
and it is longer under the influence of higher prena-
tal testosterone, and lower estrogen, as indicated by
extensive experimentation with non-human ani-
mals and studies of humans naturally subject to
altered levels of the relevant hormones (Dean &
Sharpe, 2013; Liu et al., 2014; Schwartz et al.,
2019; Thankamony et al., 2016). The use of AGD
as an indicator of prenatal testosterone has thus
been well validated with hormonal measurements,
in both sexes, among humans and animals (e.g.,
Dean & Sharpe, 2013; Schwartz et al., 2019;
Sharpe, 2020; Thankamony et al., 2016). Female
mammals that develop under relatively low levels
of prenatal testosterone, or higher levels of prenatal
estrogens, exhibit relatively shortAGDs.
Second, the ratio of the 2nd to 4th digits of the

front limbs (“digit ratio”) is shorter on average in
male than female humans, aswell as inmice (Man-
ning et al., 2014; Zheng & Cohn, 2011). In female
humans and mice, lower prenatal testosterone is
usually associatedwith higher digit ratios. Digit ra-
tio studies show considerable heterogeneity and

8 CRESPI AND DINSDALE

T
hi
sd
oc
um

en
ti
sc
op
yr
ig
ht
ed

by
th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio
n
or
on
e
of
its

al
lie
d
pu
bl
is
he
rs
.

T
hi
sa
rt
ic
le
is
in
te
nd
ed

so
le
ly
fo
rt
he

pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



lacks of replicability in their findings (e.g., Vora-
cek, 2009), and have been subject to limited valida-
tion through direct measurements of prenatal
steroid concentrations (de Sanctis et al., 2017;
Swift-Gallant et al., 2020). As such, digit ratios
provide much less-reliable and less-accurate infor-
mation about prenatal testosterone, or prenatal tes-
tosterone relative to estradiol, than does AGD.
Large sample sizes, aswell asmultiple independent
replications, of digit ratio studies are necessary for
meaningful interpretation of the results. With
regard to tests of the hypotheses addressed here,
findings based on digit ratios need to be corrobo-
ratedacross studies, orvalidatedbyother independ-
entmeans, for robust inferences tobedrawn.
Four recent studies, representing three independ-

ent data sets, have reported that women with

endometriosis exhibit shorter AGDs than do
females without endometriosis (Crestani et al.,
2020, 2021; Mendiola et al., 2016; Peters et al.,
2020). These differences are substantial and highly
predictive; for example, Mendiola et al. (2016)
reported an odds ratio of 41.6 (p = 0.002) for AGD
in deep infiltrating endometriosis, and Crestani et
al. (2020) found a specificity of 0.98 and positive
predictive value of 0.97 for a 20-mm-length AGD
cutoff value for endometriosis as a whole. The sin-
gle study that measured digit ratios among women
with andwithout endometriosis (Peters et al., 2020)
reported nonsignificant results (in the predicted
direction), although its statistical power was low
(withN = 43 for each group). Higher digit ratio has
been associated with heavier menstrual bleeding
and dysmenorrhea (painful menstrual periods due

Table 1
Findings Salient to the Hypothesis That Risk of Endometriosis Has Evolved, in Part, as a Result of Sexual
Selection by Males for Trait Expression in Females That Indicates Relatively High Reproductive Fitness,
and That Is Mediated by Lower Prenatal and Postnatal Testosterone and Higher Estradiol

Trait
Sex difference,
female bias?

Greater female bias
in women with
endometriosis?

Female bias associ-
ated with lower pre-
natal testosterone,
higher prenatal

estradiol?

Female bias associ-
ated with higher fe-
cundity or fertility,

or correlates
thereof, in healthy

women?

Female biased
trait expres-
sion preferred
by males?

Prenatal
testosterone

YES, females
lower

YES n/a YES in some
studies

Not directly

Postnatal, adult
testosterone

YES, females
lower

YES YES YES Not directly

Postnatal, adult
oxytocin

YES? Females
higher in about
half of studies

YES Predicted YES? Unknown

Antimullerian
hormone

Yes, females
lower

YES YES Unknown Unknown

Waist-hip ratio YES, females
lower

YES NO YES YES

Body mass index Varies YES YES YES to a point YES
Breast-under-
breast ratio

YES, females
higher

Predicted YES Predicted YES

“More female”
facial features

YES, by
definition

Predicted YES Predicted YES

Vocal pitch YES, females
higher

Predicted YES Predicted YES

Level of skin
pigmentation

YES, females
lower

YES YES? YES? Only in
northern regions

YES

Muscularity YES, females
lower

YES YES Unknown Unknown

Pain YES, females
higher

YES YES Unknown n/a

b-endorphin
levels

YES, females
lower

YES Unknown Unknown Unknown

Inflammation YES, females
higher

YES YES Unknown n/a
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to uterine contractions), both of which are strong
correlates of endometriosis (Tabachnik et al.,
2020).
In addition to endometriosis, shorterAGDs have

been linked with lower serum testosterone, rela-
tively low numbers of follicles per ovary, and
more-regular menstrual cycles of mothers before
pregnancy, in a non-clinical, university-age popu-
lationofwomen; all three of these variables are also
associated with endometriosis (Barbieri et al.,
2005; Gupta et al., 2015;Matalliotakis et al., 2008;
Mendiola et al., 2012; Mira-Escolano, Mendiola,
Mínguez-Alarcón, Melgarejo, et al., 2014, Mira-
Escolano, Mendiola, Mínguez-Alarcón, Roca, et
al., 2014; Ono et al., 2014). Shorter AGDs are also
associated with lower AMH levels (a strong corre-
late of endometriosis), among women without en-
dometriosis orPCOSwhowereundergoing in vitro
fertilization (Fabregues et al., 2018), and shorter
AGDs are reported inwomenwith premature ovar-
ian insufficiency, which represents a strong corre-
late of endometriosis (Dural et al., 2021; Shah,
2013). Taken together, these findings convergently
support the hypothesis that endometriosis involves
relatively low levels of prenatal testosterone. Risk
of endometriosis, and correlates of endometriosis,
havealsobeenconnected in somestudieswithearly
tomidgestation exposures to pro-estrogenicor anti-
androgenicendocrinedisruptingchemicals, includ-
ing for example diethylstilbestrol and bisphenol A
(e.g.,Barrett et al., 2019;Ottolina et al., 2020).
In contrast to these results,womenwith polycys-

tic ovary syndrome,which is known to bemediated
by high prenatal testosterone (Abbott et al., 2019;
Dumesic et al., 2014; Filippou&Homberg, 2017),
exhibit evidence of longer AGDs compared with
controls in all studies conducted to date (Hernán-
dez-Peñalver et al., 2018; Peters et al., 2020; Sán-
chez-Ferrer et al., 2017a, 2017b;Simsir et al., 2019;
Wu et al., 2017; see also Barrett et al., 2018) and
significantly shorter digit ratios in threeoffive stud-
ies (Cattrall et al., 2005;Lujan et al., 2010;Pandit et
al., 2016; Perlman et al., 2020; Peters et al., 2020;
Roy et al., 2018).More generally, PCOS involves a
broad suite of phenotypes that are opposite to those
found inendometriosis (Dinsdaleet al., 2021;Dins-
dale&Crespi, 2021).
Postnatal Testosterone. Levels of serum tes-

tosterone are substantially lower in females than
malesbothprenatally andduringadulthood (Lutch-
maya et al., 2004;Reyes et al., 1974). Serum testos-
terone levels are also lower in females with
endometriosis, compared with controls, as well as

being lower in ovarian tissue (Barbieri et al., 2005;
Ono et al., 2014; Pellicer et al., 1998). Low testos-
terone levels in ovaries apparently contribute to ap-
optosis of granulosa cells and accelerated attrition
of oocytes, thus contributing to premature ovarian
insufficiency and earlier menopause (Dural et al.,
2021;Onoet al., 2014;Shah,2013).
No studies have tested observationally for asso-

ciationsof levels of serumtestosteronewithexpres-
sion of sexually dimorphic traits in women with
endometriosis, but treatment of women with endo-
metriosis with the synthetic androgen danazol
results in a suite of androgenic changes including
hirsutism, reduced breast size, weight gain espe-
cially for visceral fat, absence of the menstrual
cycle, acne, and lowering of vocal pitch (Barbieri et
al., 1982).

Estradiol. Serum estradiol levels are higher in
females than males during adulthood, and during
prenatal development in one study (Reyes et al.,
1974) but not in another (Lutchmaya et al., 2004).
Levels of estradiol are higher inwomenwith endo-
metriosis, compared with controls, in endometrial
tissue and in menstrual blood, though not in serum
(Huhtinen et al., 2012; Stilley et al., 2012; Takaha-
shi et al., 1989). Women with endometriosis thus
show increased local estradiol production in
eutopicandectopicendometrium,whichstimulates
excessiveendometrial tissueproliferation.

SHBG. Serum hormone binding globulin
(SHBG) is a glycoprotein that regulates the bioa-
vailability of androgens and estrogens. It is pro-
duced in the liver, endometrium, and several other
tissues (Hammond&Bocchinfuso, 1996;Misao et
al., 1995, 1997). Levels of serum SHBG are about
twice as high in women than in men (Hammond,
2017), andSHBGlevels inwomenshowan inverse
association with levels of testosterone (Hammond,
2017). Women with endometriosis show elevated
levels of SHBG, in endometrium and serum, com-
pared with controls (Misao et al., 1995; Panidis et
al., 1993), and treatment of endometriosis with
danazol leads to reduced SHBG levels (Panidis et
al., 1993). The overexpression of SHBG in ectopic
endometriummay also contribute to the high local
estradiol levels found in this tissue in women with
endometriosis (Misaoet al., 1995).

Oxytocin. The peptide hormone oxytocin
orchestrates a suite of female reproductive func-
tions including lactation, uterine contraction during
menses and parturition (Kunz & Leyendecker,
2002). Serum levels of oxytocin are higher in
women than men in some studies (e.g., Carter,
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2007; Imamura et al., 2017; Kunitake et al., 2020;
Marazziti et al., 2019; Orihashi et al., 2020), but
other studies show no difference (e.g., Floyd et al.,
2010; Koven &Max, 2014; Marazziti et al., 2006;
Nishizato et al., 2017). These differences may be
associated with such factors as conditions of mea-
surement, age, stress, and reproductive status.
Within each sex, levels and effects of oxytocin are
inversely related to levels and effects of testoster-
one, in mice (Okabe et al., 2013) and humans
(Crespi, 2016), and inwomen, oxytocin production
is positively regulated by estradiol (Hazell et al.,
2009). Levels of serumoxytocin, oxytocin receptor
expression, and strengthof uterine contractions, are
higher in women with endometriosis than in con-
trols, and higher plasma and receptor expression
levels are associated with dysmenorrhea (Harada,
2013;Huang et al., 2017; Leyendecker et al., 2004;
Liedmanet al., 2008).
b-Endorphin and Pain. Pain, a core symptom

of endometriosis, shows clear sex differences in its
levels and endocrinemediation.Women thus show
higher pain sensitivity than men (Bartley & Fillin-
gim, 2013; Hashmi & Davis, 2014), with this sex
difference attributable in part to levels of testoster-
one, because pain sensitivity is inversely related to
serum testosterone in both sexes (Bartley et al.,
2015; Cairns & Gazerani, 2009); it is also attribut-
able in part to levels of the endogenous opioid
b-endorphin, which are lower in women than in
menof typicalweights (Ritter et al., 1991).
Women with endometriosis experience higher

sensitivity to pain (van Aken et al., 2018), and ex-
hibit lower levels of b-endorphin (Vercellini et al.,
1992), compared with controls, and treatment with
the androgen danazol alleviates pain symptoms, as
well as causing atrophy of ectopic endometrial tis-
sue (Selak et al., 2001). Lower levels of androgens
are also associated with higher levels of pain in
young women with dysmenorrhea (Evans et al.,
2021), a major feature of endometriosis. Female
rats treated prenatally with testosterone show pain
responses similar to thoseofmales,which indicates
that pain sensitivity canbeprogrammedduringpre-
natal development (Cicero et al., 2002). Thesefind-
ings demonstrate that women with endometriosis
exhibit evidence of a female-biased extreme for
pain and its causes, with clear roles for testosterone
in its effects.
Inflammation. Inflammation, which involves

adaptive immunological responses to cellular injury,
is centrally involved in embryo implantation (Dekel
et al., 2014) and degradation of endometrial tissue

during menstruation (Maybin & Critchley, 2015).
High inflammationofendometrial tissuealsocharac-
terizes endometriosis (Lebovic et al., 2001), where
this tissue implants at ectopic sites. Females in gen-
eral exhibit higher levelsof inflammation thanmales,
as evidenced, for example, by their stronger immune
responses and their fourfold higher rates of autoim-
mune disorders (Klein & Flanagan, 2016). Higher
levels of inflammation in women than men are
caused in part by pro-inflammatory effects of estro-
gensandtheanti-inflammatoryeffectsof testosterone
(García-Gómez et al., 2020; Klein & Flanagan,
2016; Pergola et al., 2011). Endometriosis is charac-
terized by elevated systemic and local inflammation
(Riccio et al., 2018; Zhang et al., 2018) and with
increased rates of autoimmune disorders (Shafrir et
al., 2021; Shigesi et al., 2019).Chronic inflammation
alsoappears tomediate infertility inendometriosisby
interferingwith implantation (Linetal.,2018).

Waist-Hip Ratio. Females exhibit a lower
waist-hip ratio (WHR) thandomales, in the context
of high levels of gluteofemoral, “gynoid” fat depo-
sition serving as stores to support the high energetic
costs of gestation, lactation, and offspring early
brain development (Chiappa & Singh, 2017; Las-
sek & Gaulin, 2008; Wells, 2007; Wells et al.,
2010). Among reproductive-aged women, lower
WHR is associated with lower levels of serum tes-
tosterone (Sowers et al., 2001; van Anders &
Hampson, 2005); lowWHR(with largebreast size)
is also associated with high salivary estradiol
(Jasie�nska et al., 2004), and a combination of high
testosterone with low estrogen characterizes
womenwith thehighestWHRvalues (Mondragón-
Ceballos et al., 2015). WHR is not, however, con-
sistently associated with digit ratio as a measure of
prenatal testosterone, with two studies showing
lacks of association (Fink et al., 2003; Swami et al.,
2019), one study showing higher digit ratio associ-
atedwith lowerWHR in anEnglish and in a Jamai-
can population (Manning et al., 2000), and one
study showing higher (left hand only) digit ratio
associatedwith lowerWHR, in apopulationofPol-
ish college students (Zurawiecka et al., 2019).
WHR is lower in women with endometriosis com-
pared with controls, in association with a more-pe-
ripheral (below the waist), and less male-typical
“android” (central and visceral), distribution of
body fat (Backonja et al., 2016, 2017; McCann et
al., 1993;Rossi et al., 2021; Shah et al., 2013) and a
“lean”bodyshape (Aarestrupet al., 2020).

Body Mass Index. Bodymass index (BMI) is a
measure, derived frombodyweight andheight, that
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is designed to provide a relative overall measure of
thinness and obesity. Because women are shorter
on average than men, as well as exhibiting a lower
body percentage of more-dense muscle compared
with less-dense fat, this measure is problematic to
compare between the sexes. BMI is positively cor-
relatedwith serum testosterone inwomen (Sidhu et
al., 2017; Stanikova et al., 2019; Taponen et al.,
2003), but it is not associatedwith digit ratios (Fink
et al., 2005;Swamiet al., 2019).
BMI is substantially and significantly lower in

women with endometriosis compared with con-
trols (Aarestrup et al., 2020; Backonja et al., 2017;
Garitazelaia et al., 2021; Rossi et al., 2021; Shah et
al., 2013); and by meta-analyses in Liu and Zhang
(2017),YongandWeiyuan (2017) and Jenabi et al.
(2019). For example, one study found that women
with the most severe stage of endometriosis had
the lowest BMI, although the overall relationship
between disease severity and BMI was non-linear
(Byunet al., 2020).
Muscularity. Malesexhibit substantiallyhigher

levelsofmusclemass thandofemales, dueprimarily
to the anabolic effects of higher testosterone (Lassek
& Gaulin, 2008). Among females, lower digit ratio
is associatedwith enhancedmuscularity and athletic
performance, but the roles of serum testosterone in
these effects remain unclear (Eklund et al., 2020;
Hönekopp&Schuster, 2010;Kim&Kim, 2016). In
the single study that quantifiedmuscle tissue among
women with endometriosis, affected women exhib-
ited significantly reduced upper arm muscle mass
compared with controls (Backonja et al., 2017); for
this phenotype, males show about 50% higher mus-
clemass (Frisancho,1974).
Skin Pigmentation, Sun Sensitivity, Melanoma

Risk, Hair Color, and Eye Color. Thesefive traits
are associatedwith one another because they are all
functionally linked with the human developmental
andphysiological systemfor theproductionofmel-
anins (Hernando, Ibarrola-Villava, et al., 2016;
Videira et al., 2013). This system is mediated by a
suite of genes and alleles, someofwhich exert large
phenotypic effects (Maroñas et al., 2015; Pavan &
Sturm, 2019), with variation in a given gene affect-
ing from one to all of the five pigment-related phe-
notypes. Many of the effects of allelic variation on
skin, hair and eye color phenotypes, andmelanoma
risk, are sex-specific (e.g., Hernando, Ibarrola-Vil-
lava, et al., 2016;Hernando, Ibarrola-Villava, et al.,
2016), implicating sex steroid hormones in their
physiological effects.

Phenotypic variation in skin pigmentation, sun
sensitivity, hair and eye color is especially pro-
nounced in European populations, though it is also
notable in east Asia, among some African popula-
tions, and in admixed populations in South Amer-
ica (e.g., Frost, 2014; Rocha, 2020; Vicuña et al.,
2020). Much of this variation has evolved within
the past few tens of thousands of years (seeYang et
al., 2018), with substantial evidence for positive
selection of allelic variation that mediates reduced
pigmentation levels at higher latitudes (e.g., Lao et
al., 2007; Martinez-Cadenas et al., 2013; Rees &
Harding, 2012; Rocha, 2020; Wilde et al., 2014).
At the genome-wide level, Stern et al. (2021) found
that skin pigmentation and hair coloration, and tan-
ning and skin sensitivity, were among the top eight
phenotypes thatshowedevidenceofpolygenicadap-
tationbypositiveselection inhumans.
Adult females exhibit less pigmented skin than

males across almost all human groups worldwide,
which follows in part from skin lightening at men-
arche; female skin also becomes more pigmented
during pregnancy and in non-fertile periods of the
menstrual cycle (Frost, 2007, 2014; Jablonski &
Chaplin, 2000; Sitek et al., 2018; van den Berghe&
Frost, 1986). Among females, but not males, less
pigmented skin has also been associatedwith higher
digit ratios, inapopulationofCauscasians (Manning
et al., 2004). These findings implicate steroid hor-
mones in human skin pigmentation, although they
require further replication and the mechanistic basis
ofanysuch links remains largelyunknown.
Two studies have tested for differences in skin

pigmentation in women with endometriosis com-
pared with controls (see Viganò et al., 2012).
Kvaskoff et al. (2009) reported that endometriosis
was associated with less pigmented skin in unad-
justed analyses, and in analyses that adjusted for
age, BMI, age at menarche, menstrual cycle length
and menopause age, but not in analyses that addi-
tionally adjusted for “hair color, skin complexion,
skin sensitivity to the sun, and number of naevi and
freckles.” Somigliana et al. (2010) found a non-
significant difference in skin color betweenwomen
with endometriosis (28% fair or pale, N = 98) ver-
sus controls (18% fair or pale, N = 94), with an
adjusted OR of 1.85 and 95% CI from 0.91-3.75.
Kvaskoff et al. (2014) also reported that the risks of
endometriosis were significantly lower in women
ofAsianorAfrican-Americanancestry thanamong
women ofCaucasian ancestry, and that risk ofmel-
anoma was also significantly lower in the former
two groups; they suggested that these differences
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were associated with pigmentation-related effects.
Endometriosis risk has also been reported to be
higher among Caucasian women, compared with
women with African ancestry, by meta-analysis
(Bougie et al., 2019), and in studies that should, by
their designs, be subject to minimal effects from
ascertainment biases related to racial health-care
inequalities and socioeconomic disparities (Crespi,
2021;Eggert et al., 2008;Missmer et al., 2004).
Less pigmented human skin coloration is associ-

ated with higher sensitivity to the sun and reduced
ability to tan, although these variables are also par-
tially independent because tanning ability depends
on conditional physiological responses to UV ex-
posure. Females exhibit higher sun sensitivity than
males (Hernando, Ibarrola-Villava, et al., 2016),
and the three studies conducted to date demonstrate
that women with endometriosis show significantly
higher sensitivity of the skin to sun exposure com-
pared with controls (Kvaskoff et al., 2009, 2014;
Somigliana et al., 2010). In turn, higher sun sensi-
tivity is strongly linked with increased risk of cuta-
neous melanoma, the most-deadly form of skin
cancer (Newton-Bishop et al., 2011). Melanoma
risk ishigheramongfemales thanmales for individ-
uals under age45,with apeak sexdifferenceduring
the female reproductiveperiod suggesting a role for
steroid hormones in the differences (Liu et al.,
2013). Melanoma risk is also significantly higher
among women with endometriosis compared with
controls (Farland et al., 2017; Saraswat et al.,
2021), and endometriosis risk is higher among
womenwith a family history ofmelanoma (Kvask-
off et al., 2014).
Across Caucasian populations, blue and green

eye coloration are associated with relatively
reduced skin pigmentation, via a suite of genes and
alleles affecting one or both traits (Maroñas et al.,
2015). In addition toahigherprevalenceof redhair,
females also show a higher prevalence of green
eyes and a lower prevalence of blue or grey eyes,
compared with males (Frost et al., 2017;Martinez-
Cadenas et al., 2013). Somigliana et al. (2010)
reported that rates of endometriosis were higher
among females with (pooled) green and blue eyes,
comparedwithcontrols, andVercellini et al. (2014)
found an excess of blue eyes, and a lower propor-
tion of brown eyes, among women with deep infil-
trating (severe) endometriosis, compared with
(pooled) controls and women with milder, ovarian
endometriosis (endometriomas).
Red hair, blond hair, and light brown hair are

more common among females thanmales (Frost et

al., 2017; Hysi et al., 2018), and red hair has been
associated with higher risk of endometriosis across
a suite of studies (Missmer et al., 2006;Woodworth
et al., 1995; Wyshak & Frisch, 2000; see also
Kvaskoff et al., 2009, 2014). Frost et al. (2017) sug-
gested that this higher female thanmale prevalence
of red hair is associated with higher prenatal estro-
gen, but there is no direct evidence to this effect.
Relatively light-colored hair is also associatedwith
higher rates of endometriosis by contingency table
analyses of data in Vercellini et al. (2014; Table 1
data: red, blond and light brown versus dark brown
and black, x2 = 15.3, p, .0001), in Kvaskoff et al.
(2009; Table 2 data: red, and blond versus “chest-
nut,” brown and “dark,” x2 = 5.33, p, .025), and
inKvaskoff et al. (2014;Table3data: redandblond
versusbrownandblack, x2=5.7,p, .025).
Skin pigmentation, sensitivity to sun exposure,

melanoma risk, hair color, and eye color are con-
trolled in part by genetic variation in the gene
MC1R(Melanocortin 1Receptor),which regulates
the production of eumelanin (brown) pigmentation
relative to pheomelanin (yellowand red) pigmenta-
tion (Latreille et al., 2009). In humans, loss of
MC1R expression (due to loss-of-function muta-
tions) results in red hair, fair and highly photosensi-
tive skin, green eyes, and higher risk of melanoma
(Frost et al., 2017;Haddadeen et al., 2015;Mogil et
al., 2003; Raimondi et al., 2008;White & Rabago-
Smith, 2011). MC1R allelic variation also influen-
ces variation in blonde andbrownhair coloration in
human, via a complex system of over 100 alleles
(Palmer et al., 2000; Pavan & Sturm, 2019), and
has also been demonstrated to affect perceived fa-
cial age and“youthful looks” (Liuet al., 2016).
The associations of red or light-colored hairwith

the MC1R gene, and with endometriosis, may be
functionally linked to well-replicated female-spe-
cific associations of MC1R loss of function geno-
typeswith ahigher intensity of pain perception, and
higher levels of inflammation (Chen et al., 2013;
Delaney et al., 2010; Liem et al., 2005;Mogil et al.,
2003). The MC1R gene has also been associated
with endometriosis risk in the most recent GWAS
study, in gene-wise analysis, althoughwith a nomi-
nal (not statistically adjusted) level of significance
(Rahmioglu et al., 2018). By contrast, the gene
CDKN2B-AS1, which harbors a SNP that is ge-
nome-wide significant for endometriosis risk (Rah-
mioglu et al., 2018), also mediates hair color (Hysi
et al., 2018), risk of melanoma (Read et al., 2016),
and risk of facial pigmentary spots, which are also
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Table 2
Data From the Non-Human Mammal Literature on Correlates of Endometriosis Related to Aspects of HPO
Axis Functioning (Earlier Onset of Reproduction and Faster, More-Regular Cycles), Correlates of Fitness,
and Attractiveness of Females to Males, in Relation to Indicators of Female Prenatal Testosterone Exposure
Levels (Presence of Males in Litter; Shorter Anogenital Distance; Development Flanked by No Males (0M),
Rather Than One Male (1M) or Two Males (2M); Experimental Treatment) and/or Levels of Estradiol

Species

Male choice experiments or
other data relevant to

choice
Main findings with regard to hormonal

effects References

Lab mice (Mus
musculus)

Males preferred 0M over
2M females, and 0M
females inseminated first
in choice experiments

0M females had lower testosterone
and higher estradiol at day 18 in
utero, compared with 2M females;
0M females had shorter AGDs, ear-
lier vaginal opening and shorter,
more regular estrus cycles com-
pared with 2M females; 0M and 2M
females did not differ in fecundity

McDermott et al., 1978; vom
Saal & Bronson, 1978,
1980a, 1980b; Rines & vom
Saal, 1984; vom Saal, 1981,
1989; vom Saal et al., 1990

House mice (Mus
musculus, wild
type)

Males preferred females
with shorter AGDs

Females with shorter AGDs had
higher reproductive success (more
likely to reproduce, higher preg-
nancy rate, more pregnancies) in
field enclosures

Drickamer, 1996; Drickamer
et al., 2001

Mongolian gerbils
(Meriones
unguiculatus)

Males preferred 0M and
1M females, compared
with 2M females

2M females had later estrus, longer
menstrual cycles, fewer litters, and
showed higher testosterone than 0M
and 1M females

Clark & Galef, 1988, 1998;
Clark et al., 1991

Laboratory rats
(Rattus
norvegicus)

Adult treatment with E2
increased attractiveness
of females to males; no
studies of male choice in
relation to prenatal ste-
roids in females found

Females exposed to lower (vs higher)
testosterone levels in utero had
shorter AGDs; females treated with
high testosterone in utero had lon-
ger AGDs, later vaginal opening,
prolonged and/or irregular estrus
cycle, and more preantral and antral
follicles; females treated with E2 in
utero had shorter AGDs; females
with shorter AGDs had earlier vagi-
nal opening and first estrus, and
shorter estrus cycles

Lucas et al., 1982; McCoy &
Shirley, 1992; Levy et al.,
1995; Rhees et al., 1997;
Zehr et al., 2001; Hotchkiss
et al., 2007; Wu et al., 2010

Golden hamsters
(Mesocricetus
auratus)

Males preferred control
females over females
treated prenatally with
testosterone

Females treated with prenatal testos-
terone had longer AGDs and less-
regular estrus cycles

Landauer et al., 1981

Bank voles
(Myodes
glareolus)

Males and females mated at
higher rates in trials with
females from low-testos-
terone lines than in trials
with females from high
testosterone lines, with
one male and one female
together

Females tested were offspring of sires
and dams selected for high vs low
plasma testosterone levels.
Daughters from low-testosterone
lines had higher fecundity (litter
sizes) than daughters from high-tes-
tosterone lines. No data on prenatal
testosterone effects or AGD.

Mökkonen et al., 2011; Mills
et al., 2012

Domestic rabbits
(Oryctolagus
cuniculus)

Males preferred females
with shorter AGDs

AGDs were shorter in 0M females
(versus 1M and 2M females);
females with shorter AGDs had
higher fecundity

Bánszegi et al., 2009, 2010,
2012

Yellow-bellied
marmots
(Marmota
flaviventris)

Likelihood of getting preg-
nant and rearing young
was lower in young
females with longer vs
shorter AGDs; no data
on male choice

More males in litter leads to longer
AGD in females, and delayed onset
of breeding, in field

Monclús & Blumstein, 2012;
Monclús et al., 2014

(table continues)
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affected by a SNP at the MC1R locus (Shin et al.,
2021).
The connections of skin color, sun sensitivity,

melanoma risk, hair color, andeyecolorwith corre-
lates and causes of endometriosis, other than pain
and inflammation linked to MC1R, remain largely
unexplored.However, taken together, the data tend
tofit with the hypothesis thatwomenwith endome-
triosis exhibit relative extremes of female-biased
traits, in that: (a) compared with men, women are
characterized by less pigmented skin, higher sun
sensitivity, higher rates of melanoma, and lighter
hair color, and (b) compared with control women,
women with endometriosis also show some evi-
dence of all four differences of these difference in
the same,“female,”direction.Thedata for skinpig-
mentation itself is, however, highly limited, and the
data for eye color are insufficient to draw clear
conclusions.

Synopsis of Results. Taken together, the
findings described above for prenatal and postnatal
testosterone, estradiol, SHBG, oxytocin, b-endor-
phin, pain sensitivity, inflammation, waist hip ratio,
BMI, muscularity, and skin pigmentation, sensitiv-
ity, andmelanoma risk, support the hypothesis that,
for traits exhibiting sexdifferences,womenwithen-
dometriosis show evidence of exhibiting relative
female extremes of trait expression (Table 1).
Womenwithendometriosis, comparedwithwomen
without endometriosis, thus tend to exhibit pheno-
type distributions that are further from those of
males (Figure 2). These relative “extreme female”
phenotypes are also expressed for female-limited
reproduction-related traits, in that women with en-
dometriosis exhibit earlier menarche and meno-
pause, shorter faster menstrual cycles, higher rates
of dysmenorrhea (pain during menstruation due to
uterine contraction), and more-substantial men-
strual bleeding, compared with women without en-
dometriosis (Bulletti et al., 2002; Dinsdale &
Crespi, 2021; Nnoaham et al., 2012; Wei et al.,

2016; Yasui et al., 2015). These findings, from evi-
dence concerningmany diverse traits, convergently
support the hypothesis that womenwith endometri-
osis exhibit relative female extremes of expression
of sexuallydimorphic, and female limited, traits.
The traits analyzed abovedonot vary in isolation

from one another, in their patterns of differences
between the sexes, and between women with and
without endometriosis: most of the traits show
strong functional connections, especially with lev-
els of testosterone (e.g., Figure 4; Dinsdale et al.,
2021; Dinsdale & Crespi, 2021). These associa-
tions derive from the highly integrated functioning
of theHPO (Hypothalamic-Pituitary-Ovarian) axis
in women, such that lower prenatal and postnatal
testosterone are physiologically and developmen-
tally linked with lower AMH, higher FSH relative
toLH,higherOT, and lowerWHRandBMI.

Relationships of Endometriosis-Associated
Phenotypes and Genotypes With Correlates of
Reproductive Fitness

Thenextmajorprediction in thehypothesis eval-
uated here is that phenotypes andgenotypes associ-
ated with endometriosis should be linked with
correlates of higher reproductive fitness. In testing
this prediction, it is essential to bear inmind that en-
dometriosis itself is not expected to be associated
with higher reproductive fitness, because it is con-
ceptualized as reflecting a maladaptive extreme of
relatively highly female biased traits related to
reproduction. Correlates and indicators of female
reproductive fitness include: (a) fertility (level of
ability to conceive and bear children), (b) fecund-
ability (conceptions per cycle), (c) fecundity (total
numbers of children born), (d) nubility (recent
attainment of physical and sexual maturity), (e) re-
sidual reproductive value (expected future repro-
duction downweighted by risk of mortality;
Andrewset al., 2017), and (f) ability to successfully

Table 2 (continued)

Species

Male choice experiments or
other data relevant to

choice
Main findings with regard to hormonal

effects References

Mouse lemurs
(Microcebus
murinus)

Males prefer females with
higher serum E2 levels;
no data on prenatal
effects

Presence of a male in natal litter
reduces female pregnancy success,
and reduces their serum E2 levels at
estrus by �30%

Gomez et al., 2012; Perret,
2019

Note. See references for details of the choice experiments. Males also preferred control females, compared with females
that were experimentally treated in utero with testosterone, from studies of sheep (Jackson et al., 2013; Roberts et al.,
2008).
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rear the children produced. The values of at least
the first five of these variables are expected to be
moderately to highly positive correlated, subject
mainly to the caveat that fertility and fecundability
reach their peaks after the highest levels of nubility
and reproductivevalue (Lassek&Gaulin, 2019).
Data are available for five phenotypic correlates

ofendometriosis to test forassociationswith female
correlatesof reproductivefitness:prenatal andpost-
natal testosterone, serum oxytocin, age at men-
arche, WHR and BMI, and pigmentation-related
traits. Twogenetic factors associatedwith endome-
triosis risk, haplotypes of the FSHB gene, and al-
leles at the PROGINS locus of the progesterone
receptorgenePR, canalsobe tested forassociations
with correlates of reproductive fitness, because of
theirwell-studiedpleiotropic effects.
Prenatal and Postnatal Testosterone and

Correlates of Fitness. A higher, more female-
biased digit ratio, indicative of lower prenatal

testosterone, has been associated with higher
female fecundity in three populations from Eng-
land, Germany, and Hungary, and in the English
population, married women had higher digit ratios
than did unmarried women (Manning et al., 2000).
Similarly, in a population from rural Poland,
women with higher digit ratios had more children
and longer reproductive lifespans (Klimek et al.,
2016). In aBBCInternet studywithvery large sam-
ple sizes (.100,000),higherdigit ratio inwhitehet-
erosexual women was correlated with higher
numbers of children and an earlier age at birth of
theirfirst child (Manning&Fink, 2008). In no stud-
ies has lower digit ratio in women been associated
withhigher fecundity.
Shorter,more female-biasedAGDs in non-clini-

cal, college-agedwomen have been linkedwith (a)
lower serum testosterone (Mira-Escolano et al.,
2014); (b) smaller ovarian follicle number (higher
follicle numbers being linked with excess fetal

Figure 4
The Key Endocrine Phenotypes Associated With Endometriosis That Are Causally
Linked With One Another, Whose Covariation Can Be Traced to Relatively Low
Prenatal and Postnatal Testosterone That Cause Expression of the Relatively
Female Phenotypes Found in Endometriosis

Note. For details regarding the causal associations, see Barnett et al. (2002), van Anders and
Hampson (2005), Cashdan (2008), Blouin et al. (2008), Mira-Escolano, Mendiola, Mínguez-
Alarcón, Melgarejo, et al. (2014), Mira-Escolano, Mendiola, Mínguez-Alarcón, Roca, et al.
(2014), Qian et al. (2014), Sun et al. (2014), Mondragón-Ceballos et al. (2015), Böttcher et
al. (2017), Alebi�c et al. (2018), Fabregues et al. (2018), Albu & Albu (2019), Barbotin et al.
(2019), Lv et al. (2020), Stanikova et al. (2019). See the online article for the color version
of this figure.
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testosterone exposure; Mendiola et al., 2012); and
(c) a reduced number of menstrual cycle irregular-
ities in their mothers prior to pregnancy (higher
numbers also being linked with excess fetal testos-
terone exposure, and endometriosis being linked
with cycles that are shorter and more regular that
in controls; Mira-Escolano, Mendiola, Mínguez-
Alarcón, Melgarejo, et al. (2014); Mira-Escolano,
Mendiola, Mínguez-Alarcón, Roca, et al. (2014).
Shorter AGDs (or other strong correlates of low
prenatal testosterone) are also positively associated
with correlates of higher fitness, mainly fecundity,
in studies of mice, gerbils, rabbits, and lemurs, as
describedbelow.
As noted above, significantly longer AGDs than

in controls have consistently been reported among
women with polycystic ovary syndrome (PCOS),
which is a primary cause of anovulatory infertility
(Costello et al., 2012); shorter 2D4D digit ratios
havealso foundamongwomenwithPCOS in some
studies with no difference in others. Most women
with PCOS also exhibit substantially elevated lev-
els of ovarian and serum testosterone (Abbott et al.,
2019; Filippou & Homburg, 2017; Rosenfield &
Ehrmann, 2016). These results are relevant to fit-
ness variation in that relatively high serum testos-
terone is associated with reduced fertility and
fecundity among females due to anovulation or
oligo-ovulation, higher rates of miscarriage, and
other causes (Cocksedge et al., 2008; Okon et al.,
1998;Sjaardaet al., 2018).
Evidence relevant to negative effects of rela-

tively high prenatal testosterone on female repro-
ductive fitness also comes from two studies that
compared the fitness of females from same-sex
twins versus opposite-sex twins, who are subject to
transfer of testosterone in utero. Thus, both
Bütikofer et al. (2019) and Lummaa et al. (2007)
found that females with amale co-twin had signifi-
cantly lower probabilities of being married as well
as significantly lower numbers of children, com-
pared with females with a female co-twin, though
another study did not find this effect (Medland et
al., 2008).
The primary fitness-related correlates of rela-

tively low prenatal and postnatal testosterone in
women include diminished ovarian reserve (Dural
et al., 2021; Gleicher et al., 2013; Lu et al., 2014;
Prizant et al., 2014; Shah, 2013), and, as discussed
above, endometriosis, which causes notable reduc-
tions in fertilitydue to implantation failure, anatom-
ical obstructions, andother factors.Wainstocket al.
(2017) reported that AGD was lower among

women who had undergone fertility treatment,
based on data from five women (in their sample of
300)whounderwent suchprocedures; the causesof
these infertility treatments (e.g., endometriosis or
some other cause) was not described, and up to
50% of women with infertility have endometriosis
(Bulletti et al., 2010).
Considered together, these findings provide evi-

dence that relatively low, but not extremely low,
levels of prenatal and postnatal testosterone may
confer relatively high reproductive fitness among
women (Figure 5). The primary limitation of this
inference is that much of the evidence comes from
lower reproduction in women with relatively high
testosterone, so the functional form of the fitness-
testosterone association across the full spectrum of
female testosterone levels remains unclear. The hy-
pothesis couldbe testedmore directly andprecisely
usingdata onAGD,and serum testosterone, in rela-
tion to correlates of female reproductive success,
especially in traditional societies.

Oxytocin andCorrelates of Fitness. Asdescribed
above, levels of oxytocin are elevated in women
with endometriosis. Variation in serum and brain
oxytocin levels may influence female reproductive
success especially through effects on fertility,
maternal behavior, mating, and other social rela-
tionships.Serumoxytocin levels arehighest around
ovulation (Engel et al., 2019), and through its inter-
actionswith gonadal steroids this hormone controls
the uterine peristalsis that transports sperm up the
fallopian tubes (Kunz et al., 2007) andpushesmen-
strual material out of the body. Uterine contraction
strength also exhibits an inverse relationship with
implantation success (Moraloglu et al., 2010).
Overly strong and disorganized uterine contrac-
tions, owing tohighoxytocin andoxytocin receptor
levels, appear to mediate reduced fecundability as
well as dysmenorrhea in women with endometrio-
sis and adenomyosis, a condition closely related to
endometriosis (Guo et al., 2013; Kunz et al., 2007;
Leyendecker et al., 2004). As such, especially ele-
vated oxytocin levels and high uterine contractility
in women with endometriosis may contribute to
reduced fertility and fecundity.
Oxytocin also coordinates female behaviors

associated with maternal care, including attentive-
ness, bonding and breast-feeding (Feldman et al.,
2011; Feldman & Bakermans-Kranenburg, 2017);
however, effects of elevated oxytocin on human
maternal care have yet to be studied. More gener-
ally, high oxytocin levels are linked to thepersonal-
ity trait of extraversion (Cardoso et al., 2012;
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Human et al., 2016) and extraversion also shows
strong genetic and phenotypic associations with
bipolar disorder (e.g., Middeldorp et al., 2011;
Quilty et al., 2009). In turn, bipolar disorder shows
notable comorbidity with endometriosis (Chen et
al., 2020; Dinsdale & Crespi, 2017) and levels of
oxytocin are higher in individuals with bipolar
mania (Turan et al., 2013). These findings are con-
cordant with the hypothesis that endometriosis
involves extremes of oxytocin-related psychologi-
cal traits, although links to components of fitness
for these phenotypes remain unclear. Oxytocin
administration also increases perception of physi-
cal attractiveness in others (Theodoridou et al.,
2009), raising the hypothesis that women with
higher levels of oxytocin, or higher oxytocin reac-
tivity, may also be perceived asmore attractive, for
reasons related to higher levels of extraversion and
positively social interactive behavior.Overall, oxy-
tocin reduces thresholds for positive social engage-
ment in diverse contexts, including parenting,
sexuality, and extraversion. As such, relatively
high (though not too high) oxytocinergic activity
levels are expected to be positively associated with
correlates of fitness (e.g., Carter, 2018; Goodson,
2008), includingmale preference, although this hy-
pothesis hasyet tobe subjected todirect tests.
Age at Menarche and Correlates of Fitness. In

traditional populations, age at menarche is posi-
tively associated with age at first pregnancy (e.g.,
Hochberg et al., 2011; Sandler et al., 1984; Udry&
Cliquet, 1982). Younger age at menarche has been

linked with higher fecundability in Danish women
(Guldbrandsen et al., 2014), and late ages at men-
arche have been linked with reduced fecundability
in the Danish study and in a population in rural
China (Guldbrandsen et al., 2014; Zhang et al.,
2017). Age at menarche also shows a strong posi-
tive association with risk of irregular cycles, from
0, 6, 5, 24 and 45 to 80% irregularity at menarche
ages 10, 11, 12, 13, and 14 to more than 14 respec-
tively, in a Japanesepopulation (Anai et al., 2001).
The earlier reproduction, shorter time to preg-

nancy, and more-regular cycles of women who
haveearlier agesofmenarchemayormaynot trans-
late into higher fecundity or lifetime reproduction,
dependingon thepresence and strengthof tradeoffs
between early, fast reproduction and other compo-
nents of fitness. Four studies of traditional or agri-
cultural populations demonstrate this diversity in
outcomes. Hochberg et al. (2011) showed that ear-
lier age atmenarchedid not confer higher fecundity
because it led to smaller body size, which reduced
reproductive success. Hayward et al. (2015)
reported that higher early life fecundity (number of
childrenbirthedunder age25),which is expected to
be correlated with early menarche, was associated
with higher late-life mortality; however, this trade-
off did not obviate a positive association of higher
early life fecundity with higher lifetime fitness
overall. Gurven et al. (2016) demonstrated that
higher parity and a faster pace of reproductionwere
associated with lower nutritional condition and
higher mortality in the short term, but that such

Figure 5
By the Hypothesis Evaluated Here, Endometriosis Risk
Engenders Maladaptive Extremes of Effects From Low Prenatal
and Postnatal Testosterone; the Highest Female Reproductive
Performance Involves Below-Average Testosterone in Women
(the Brightest Red), and Reproductive Performance Is Also
Reduced When Testosterone Levels Are Relatively High

Note. See the online article for the color version of this figure.
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costs were alleviated when evaluated over longer
periodsof time.Finally,Lycett et al. (2000) demon-
strated a negative association of fecunditywith lon-
gevity for women with low levels of resources,
while the opposite was true for high-resource
women. The presence and nature of phenotypic
tradeoffsbetweenearly, fast reproductionandother
female fitness components are thus likely to vary
amongpopulations.
WHR, BMI, and Correlates of Fitness. WHR

is typically lowest in the first few years after men-
arche in nulligravid women, who, at this stage in
the reproductive lifespan, exhibit their highest
reproductivevalue (Andrewset al., 2017) andnubi-
lity (Lassek & Gaulin, 2019). WHR then tends to
increasewith numbers of children across the repro-
ductive lifespan (Butovskayaet al., 2017).
WHR and BMI may be associated with female

reproductive fitness through some combination of
direct, naturally selected effects on reproduction,
andeffectsviasexual selectionbymalematechoice
andmale contributions to femalefitness.Relatively
low (below average) WHR may confer benefits to
females with regards to higher fecundability (time
to pregnancy), higher birth weights of offspring,
more-regularmenstrual cycles,more-frequentovu-
lation, higher successwith artificial inseminationor
in vitroembryo transfer, higher estradiol andhigher
estradiol relative to testosterone, and higher levels
of serum DHA fatty acid that are crucial for early
brain development (e.g., Bovet, 2018; Butovskaya
et al., 2017; Cashdan, 2008; Cloud & Perilloux,
2014; Jasie�nska et al., 2004; Pawłowski&Dunbar,
2005; Singh, 2002; Singh & Singh, 2011; Wass et
al., 1997; Weeden & Sabini, 2005; Zaadstra et al.,
1993).
Relatively low BMI (between about 19 and 25)

appears to confer similar reproductive benefits as
lowWHRtowomen in termsof fecundability (e.g.,
Imterat et al., 2019; McKinnon et al., 2016; Ram-
lau-Hansen et al., 2007; Wise et al., 2010; Yilmaz
et al., 2009). For example, Wise et al. (2010) and
McKinnon et al. (2016) showed evidence of linear
decreases in fecundability with BMI, across virtu-
ally the full range of values, andHassan andKillick
(2004) and Gesink Law et al. (2007) showed inter-
mediate optima of fecundability for BMI of about
20, with slightly lower values under 19, and sub-
stantial reductionsoverabout25.
These results are subject to the observation and

caveat that especially low WHR or BMI are
expected to involve reduced fecundability and fe-
cundity (especially in low-resource ecologies),

such that these traits may be subject to stabilizing
selection overall (Gesink Law et al., 2007; Lassek
& Gaulin, 2018), and that male-preferred notably
low values for WHR and BMI may signal nubility
and high expected reproductive value rather than
current high fecundability and fecundity (Lassek&
Gaulin, 2019). Thus, although both high BMI and
high WHR can impose considerable reproductive
costs associated with high testosterone and other
factors, they appear to involve higher reproductive
costs than do relatively low BMI and WHR. Rela-
tively low WHR and BMI, considered in the con-
text of age and life history, thus appear to provide
reproductive value and reproductive fitness bene-
fits, to both females and the males who choose
them. As for age at menarche, the degree to which
the higher fecundability or fecundity associated
with lowerWHR or BMI translate into higher life-
time fitness depends on tradeoffs with other com-
ponents of fitness, such as survival. As for any
othermammal, thesefitness-related considerations
depend stronglyon local ecological and social con-
ditions that select for locally optimal life histories,
and upon mismatches due to rapid recent environ-
mental change.

Skin Pigmentation, Associated Traits, and
Correlates of Fitness. The strong positive associ-
ations of higher latitude and lower UV radiation
with reduced pigmentation (Jablonski & Chaplin,
2010, 2017), and the clear links of reducedpigmen-
tation with increased synthesis of vitamin D (Åke-
son et al., 2016; Clemens et al., 1982), have
motivated the hypothesis that the primary selective
pressure favoring theevolutionof lighter pigmenta-
tionwas themore-efficient generation of vitaminD
(Chaplin & Jablonski, 2009; Jablonski & Chaplin,
2010). In humans about 90% of vitamin D is
obtained from sun exposure, and about 10% comes
from the diet, especially from fish, eggs and dairy
(Bowyer et al., 2009), with smaller amounts from
meat (Schmid & Walther, 2013) and very little
from plants (Jäpelt & Jakobsen, 2013). The migra-
tion of humans to more-northern latitudes within
the past 50,000-60,000 years, and the more-recent
advent of agriculture and high-cereal diets, would
both have led to greatly reduced vitamin D avail-
ability if humans had retained the more-pigmented
skin typical of lower latitudes (Rees & Harding,
2012; Jablonski&Chaplin, 2017).
Four convergent lines of evidence suggests that

reproductive fitness benefits of reduced skin pig-
mentation at higher latitudes accrued dispropor-
tionately to women. First, women exhibit higher
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levels of vitamin D than do men (Jonasson et al.,
2020), as well as less pigmented skin overall, as
noted above. Vitamin D requirements are espe-
cially high during pregnancy (Bowyer et al., 2009;
Richardet al., 2017).
Second, in contemporary populations of healthy

women, lower serum vitamin D concentrations are
associated with longer, more-irregular menstrual
cycles (Jukic et al., 2015, 2019), lower serumestra-
diol (Harmon et al., 2020), and reduced fecundabil-
ity (conception rate per cycle; Fung et al., 2017;
Jukic et al., 2019). The effects on fecundability are
substantial: for example, Jukic et al. (2019) found
that compared with women with average levels of
vitamin D (30-40 ng/ul), women with low levels
(,20 ug/ng) showed a 45% reduction in fecund-
ability, and women with high levels (.50 ng/ul)
showed a 35% increase. Such effects appear to be
mediated by differences associated with ovulation
and implantation (Jukic & Harmon, 2020), as evi-
denced in part by higher in vitro fertilization suc-
cess forwomenwithhigher serum levels ofvitamin
D (Chu et al., 2018). Conception rates are also
higher, andmenstrual cycles are shorter, in summer
than inwinter in northern Europe (Danilenko et al.,
2011; Rojansky et al., 1992). Finally, an extensive
set of animal-model studies links relatively low
vitamin D levels with reduced fertility (see Jukic et
al., 2019).
Third, skin pigmentation and tanning ability

have substantial effects on vitamin D levels at any
given locality. In Switzerland, for example, rates of
vitamin D deficiency are two to three times higher
among pregnant women with more-pigmented
compared with less-pigmented skin (and deficien-
cies are higher in pregnant than non-pregnant
women overall; Richard et al., 2017). Similarly, in
Australia, vitaminD levels inpregnantwomen, and
in neonate cord blood, show strong effects from
both skin pigmentation and tanning ability: women
with less pigmented skin who burn and never tan
showed rates of vitamin D deficiency or insuffi-
ciency that are about half those of women with ei-
ther low-pigmentation skin who tan, or women
with more-pigmented skin (Bowyer et al., 2009).
Vitamin D deficiency in pregnancy increases the
risk of pre-eclampsia, low birth weight, and poor
postnatal growth, among other negative effects on
health (Bowyer et al., 2009;Mulliganet al., 2010).
Fourth, if less pigmented and sun-sensitive skin

are associated with higher levels of vitamin D, and
with endometriosis, then women with endometrio-
sis, and phenotypes associated with it, should tend

to exhibit relatively high levels of vitamin D. Four
studies have measured vitamin D levels in women
with endometriosis compared with controls
(reviewed in Buggio et al., 2016); two reported
higher levels in endometriosis (for one of the two
vitaminDmetabolites analyzed), one found no dif-
ferences, and one reported lower levels. Higher se-
rum levels of vitaminD have also been linkedwith
two strong correlates of endometriosis, lower
WHR and lower BMI (Pasco et al., 2009; Revez et
al., 2020; Wimalawansa, 2018). More generally,
lower serum vitamin D is closely associated with
high body weight and obesity (Hochberg & Hoch-
berg, 2019;Vrani�c et al., 2019;Walsh et al., 2017),
in contrast to the leanness associated with risk of
endometriosis (Aarestrup et al., 2020). The pri-
mary limitations involved in interpreting these
data on vitamin D levels, and their effects, is the
complexity of the genetic and environmental fac-
tors involved, especially in contemporary envi-
ronments in which sun exposure is generally
reduced, and where individuals no longer live in
the general locations and environments to which
their ancestorswere adapted.
Finally, other variables, including the break-

down of folate byUV exposure (Elias&Williams,
2013), effects of vitaminD on calciummetabolism
especially in pregnancy and lactation (Diogenes et
al., 2013), and the potential effects of mortality
frommelanoma,may also be involved in the selec-
tivepressures affecting skin coloration and tanning.
The contributions of these factors to fitness varia-
tion among females are relatively difficult to
quantify.
The findings described above provide conver-

gent evidence that less pigmented skin coloration
provides reproductive fitness benefits to females
who live at relatively high latitudes, most likely via
effects on the generation of sufficient vitaminD for
successful reproduction. Among the clearest sup-
port for such fitness benefits comes from the suite
of studies, discussed above, that have quantified
strong positive selection for alleles associated with
lighter skin coloration, in recent human evolution,
in some European and east Asian populations.
There is also evidence of positive selection in
Europe on alleles of the vitamin D receptor gene
VDR, and evidence for coadaptation of this gene
with the genes for skin pigmentation (Hochberg &
Hochberg, 2019;Tiosanoet al., 2016).

FSHB Haplotypes, PROGINS Locus Alleles,
and Correlates of Fitness. A large haplotype of
the gene FSHB is genome-wide significant for risk
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of endometriosis in GWAS (Rahmioglu et al.,
2018), and the high risk haplotype is associated
with earlier age of first birth, higher number of life-
time live births, and lower risk of nulliparity, as
well as with lower serum testosterone, earlier men-
arche andmenopause, shortermenstrual cycles and
lower risk of PCOS (Laisk et al., 2018; Rull et al.,
2018;Ruth et al., 2015, 2016; Sapkota et al., 2017).
Similarly, a haplotype of the progesterone receptor
gene, which is significantly associated with endo-
metriosis by meta-analysis, is pleiotropically asso-
ciated with a reduced rate of early miscarriage and
havingmore sisters (Pabalan et al., 2014; Zeberg et
al., 2020). Thesefindings suggest that somegenetic
factors that increase risk of endometriosismay also
increase reproductive fitness among women who
do not develop endometriosis, as postulated here.
This hypothesis predicts that polygenic risk scores
for endometriosis should be positively correlated
withmetrics of reproductivefitness, amongwomen
whodonothave thedisease.

Relationships of Endometriosis-Associated
Morphological Phenotypes With Male Pref-
erence

By the hypothesis tested here, endometriosis-
associated phenotypes should be preferred by
males because, as described above, they are indica-
tors of higher female reproductivefitness. This pre-
diction can be evaluated for three traits, WHR,
BMI, andskinpigmentation.
WHR and BMI. There is a substantial litera-

ture demonstrating evidence formale preference of
females with relatively lowWHR and BMI, which
includeswork in pre-industrial and traditional soci-
eties (reviews inAndrewset al., 2017;Bovet, 2018;
Cloud & Perilloux, 2014; Del Zotto & Pegna,
2017; Furnham et al., 2002, 2005; Grillot et al.,
2014; Jones, 1996; Lassek & Gaulin, 2019; Singh
et al., 2010; Singh and Singh, 2011; Wang et al.,
2015).Thisbodyofworkshowsahigh level of con-
sistency infindingsacrosspopulationsandcultures,
althoughwith some variation in results that may be
related to local ecology (e.g., Gangestad&Scheyd,
2005). The degree to whichWHR and BMI repre-
sent specific morphological traits that show male
preference remains somewhat of an open question;
for example, Rilling et al. (2009) showed that low
abdominal depth, and a small waist circumference,
were stronger predictors of attraction. Low WHR
andBMImay also serve as good indicators of other
traits, especially young age and nulliparity, that

signal high reproductive value (Lassek & Gaulin,
2018;Wanget al., 2015).

Skin Pigmentation. Males have been reported
to prefer females with relatively less pigmented
skin (comparedwith others in the samepopulation)
across a suite of studies conducted within diverse
human populations distributed across the globe,
and including populations without European con-
tact and a population of native South Africans
(Coetzee et al., 2012; van den Berghe & Frost,
1986; Feinman & Gill, 1978; Dixson et al., 2007,
2010; Kleisner et al., 2017; reviews in Frost, 2007,
2014; Jones,1996).Thereareexceptions to thispat-
tern (Dixson et al., 2007; Swami et al., 2008), and
such variationmay be related to biological and cul-
tural processes whose causes remain unexplored
(Li et al., 2008;Swamiet al., 2008).

Male Preferences for Other Female Traits
Linked With Relatively Low Testosterone

A necessary condition for the sexual selection
hypothesis addressed here is that males prefer
female sexually selected traits that represent indica-
tors or correlates of relatively low testosterone and/
or high estradiol (Figure 1). This prediction applies
to any sexually dimorphic or female-limited trait,
including those that have not yet been tested for
associations with endometriosis. For three traits,
sexually dimorphic facial features, voice auditory
characteristics, and breast size, sufficient data are
available on sexual dimorphism, hormonal deter-
minants, male choice, and fitness-related effects, to
evaluate this prediction. These traits can also use-
fully beused to test the corollary prediction that dif-
ferent indicators of lower testosterone and high
estradiol in women, each of which is associated
with male preference, should be positively corre-
latedwithoneanother.

Faces. Male preference for morphometrically
“more-female,” compared with “more-male”
female faces has been demonstrated in a large set of
studies, including work in traditional and indige-
nous societies as well as westernized ones (see
Kleisner et al., 2017;Ko�cnar et al., 2019; Lee et al.,
2014;Marcinkowska et al., 2014; Scott et al., 2014;
reviews in Ko�sci�nski, 2007; Little et al., 2011).
Several studies have linked steroid hormones to
female facial features: (a)Whitehouse et al. (2015)
reported higher testosterone in umbilical cord
blood, and lower left-hand (but not right hand) digit
ratios, among women with “more-male” faces; (b)
Probst et al. (2016) showed associations of higher
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female facial attractiveness with lower serum tes-
tosterone and lower testosterone/estradiol ratio;
(c) Burriss et al. (2007) showed an association
between higher digit ratio and “more-female” fa-
cial form (see also Fink et al., 2005); (d) Law
Smith et al. (2006) showed that higher late-follicu-
lar state estrogen levels were associated with
“more-female” faces and higher attractiveness;
and (e) _Zela�zniewicz et al. (2021) reported that
higher female facial attractiveness was linked
with lower serum testosterone, higher estradiol,
and lower levels of AMH; as described above,
AMH is reduced in women with endometriosis.
Finally, two studies have linked higher fecundity
(numbers of children) with greater facial attrac-
tiveness (Jokela, 2009) or both facial attractivess
and a “more-female” face (Pflüger et al., 2012); by
contrast, one study found no association of facial
attractiveness with numbers of children or grand-
children (Pawłowski et al., 2008).
Voices. Male preferences for voices of adult

females that are relatively high-pitched have been
reported consistently across multiple studies (Bor-
kowska & Pawlowski, 2011; Collins & Missing,
2003; Feinberg et al., 2008; Valentova et al., 2019;
reviews inBarkat-Defradas et al., 2021; Suire et al.,
2021). Several studies link higher pitch ofwomen's
voiceswith steroid hormone effects: pitch has been
associated with lower testosterone and with higher
estradiol (Abitbol et al., 1999;Hamdan et al., 2018;
Hannoun et al., 2011), administration of a synthetic
androgen, danazol, to women with endometriosis
causes changes (deepening) of pitch in about 5-
10%of cases (Pattie et al., 1998), and vocal pitch is
positively correlated with digit ratio among 5-year
old children (Levrero et al., 2018). Finally, Atkin-
son et al. (2012) showed, in an indigenous popula-
tion in Namibia, that females with higher-pitched
voiceshadmorechildren.
Breast Size. Breast size is notably sexually

dimorphic in humans, and larger breast size has
been linked with lower levels of testosterone or
other androgens, and higher levels of estrogens (e.
g., Barbieri et al., 1982; Jernström&Olsson, 1997;
Schmidt et al., 2002). As regards prenatal effects,
Palmer et al. (2013) showed that prenatal exposure
to the potent synthetic estrogen diethystilbestrol
was associatedwith larger breast size at age 20, and
Ertu�grul et al. (2020) reported that higher digit
ratioswere linkedwith larger breast-to-underbreast
ratios in university-aged women. Males tend to
express preferences for relatively large breasts in

women (or preference for large plus medium over
small breasts), in both western and traditional soci-
eties, although there is cross-cultural variation in
the presence of strength of such preferences, and
in some studies larger breast size is only preferred
in association with lowWHR (Dixson et al., 2011,
2015; Ford & Beach, 1951; Furnham et al., 1998,
2006; Gitter et al., 1983; Gueguen, 2007; Havlí�cek
et al., 2017;Ko�sci�nski et al., 2020; Singh&Young,
1995;Zelazniewicz&Pawlowski, 2011).
Jasie�nska et al. (2004) showed that levels of es-

tradiol were significantly higher among reproduc-
tive aged women with the combination of large
breasts and low WHRs, in comparison to women
with small breasts and low or high WHRs. They
inferred a higher reproductive capacity for such
women from data on estradiol levels; however,
there appear tobenodata availableon fertilityor fe-
cundity of women in relation to breast size. There
are also no data in the currently available literature
onbreast size in relation toendometriosis.
Taken together, these studies on facial form,

vocal pitch, and breast size provide evidence for
male preference of “more-female” traits whose
expression is mediated by low testosterone and/or
high estrogen, and that may contribute to female
reproductive success. Clear predictions that follow
are that women with endometriosis should exhibit
relatively “more-female” facial morphology,
higher-pitched voices, and larger breast size, com-
paredwithcontrols.
To the extent that femaleoverall “attractiveness”

is mediated through the integration of multiple
traits, all of which develop in part under the effects
of relatively low testosteroneand relativelyhighes-
tradiol, attractiveness-related phenotypes should
tend to be positively associated with one another.
Such positive associations have been reported for
facialwith vocal attractiveness (Collins&Missing,
2003; Wheatley et al., 2014), higher vocal attrac-
tiveness with lower WHR (Hughes et al., 2004),
higher facial attractiveness with lower BMI (Hu et
al., 2019; for a genetic correlation), and facial shape
with WHR and BMI (Mayer et al., 2017; Pisanski
et al., 2016).

Sexual Selection for Correlates of Endometriosis
in Non-HumanMammals

The sexual selection hypothesis can also be
tested using data from non-human species, given
the fundamental similarities in theHPOaxes across
diverse species ofmammals. Because all such non-
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human species, except some primates, some bats
and spiny mice, do not exhibit menstruation, the
predictions involve correlates of endometriosis,
including testosterone and estradiol levels, AGD
lengths, timing of first estrus, menstrual cycle tim-
ing and regularity, correlates of fitness (especially
fecundity), and preference by males. Thus the spe-
cific predictions are that females who develop
under relatively low prenatal testosterone levels
(and/or high estradiol) show lowerAGDs (as in en-
dometriosis; Crestani et al., 2020, 2021; Mendiola
et al., 2016; Peters et al., 2020), earlier first estrus
(as in endometriosis, for menarche; Day et al.,
2015;Nnoahamet al., 2012), faster andmore-regu-
lar cycles (as in endometriosis; Wei et al., 2016;
Yasui et al., 2015), and higher fecundity (as for cor-
relates of endometriosis), and are preferred by
males formating (as for thecorrelatesofendometri-
osis discussed above). Converse predictions apply
for females who developed under relatively high
prenatal testosterone.
From studies of seven species of rodents and pri-

mates, femaledevelopment under conditions of rel-
atively low prenatal testosterone (or high estradiol)
is associated with (a) earlier vaginal opening or
estrus, in mice, gerbils and rats; (b) shorter or more
regular menstrual cycles, or both, in mice, gerbils,
rats and hamsters; (c) relatively high fertility or fe-
cundity, in mice, gerbils, rabbits, marmots, and
lemurs; and (d) mate preference by males, in mice,
gerbils, hamsters and rabbits (Table 2). These find-
ings strongly support thehypothesis that lowprena-
tal testosterone mediates the development of
endometriosis-associated phenotypes that are
linked with increased female reproductive fitness
andpreferencebymales.

Discussion

The general idea that features of higher female-
trait expression and female attractiveness may be
positively associated with endometriosis risk,
owing to the joint effects of sex steroids on both
phenomena, was first suggested by Buggio et al.
(2012). In this article, we have extended and eval-
uated their insight and drawn together extensive
bodies of literature that provide convergent support
for the specifichypothesis that endometriosis risk is
linked with female biases in developmental, endo-
crine, morphological and life history phenotypes
that areassociatedwith lowtestosterone,highestra-
diol, high reproductive fitness, and preference by

males. These findings implicate sexual selection in
the evolution and maintenance of risk for endome-
triosis, and suggest that this disorder represents, in
part, a manifestation of maladaptive extremes in
female biases to human sexually dimorphic and
sex-limited traits (Figures2 and5).
The hypothesis that sexual selection for “more-

female” trait expression hasmediated the evolution
and maintenance of endometriosis is supported by
six independent lines of evidence: (a) endometrio-
sis involves female biases to expression of the
majorgenes that control early inutero sexualdevel-
opment; (b) endometriosis involves relatively short
anogenitaldistances inwomen,which indicate rela-
tively lowprenatal testosterone exposure; (c) endo-
metriosis involves relatively female-biased phen-
otypes, compared with control females, for a wide
range of endocrinological, physiological and mor-
phological traits, including effects on postnatal tes-
tosterone, oxytocin, b-endorphin, pain perception,
inflammation, WHR, muscularity, and skin, hair
and eye pigment-related phenotypes (Table 1),
most of which can be linked to low prenatal and/or
postnatal testosterone; (d) for several of these traits,
includingWHR, BMI, and skin phenotypes, males
exhibit preferences for the relative female biased
traits that are themselves associated with higher
female reproductive success; (e) for some addi-
tional traits, including female-biased facial mor-
phology, a higher-pitched voice, and larger breasts,
relative female biased trait expression shows
evidence of being preferred by males, and trait
expression is mediated by prenatal and postnatal
testosterone and estrogens, although links to endo-
metriosis have yet to be tested; and (f) studies of
mice, rats, gerbils, hamsters, voles, rabbits, mar-
mots, and lemurs provide evidence that, as for en-
dometriosis and its correlates in humans, low
testosterone and/or high estradiol is associatedwith
earlier onset of estrus, shorter and more regular
cycles, indicators of higher reproduction, and/or
preference by males for mating. These results are
not dependent in any way on inferences from data
on digit ratios (which is inconsistent and controver-
sial), although theavailable, relevantdigit ratiodata
tends to support thepredictions.
An important limitation to the sets of data rele-

vant to testing the hypothesis evaluated here is the
general paucity of data on AGD in women, such
thatourknowledgeof the linksofprenatal testoster-
one with adult female reproductive and secondary
sexual traits remains restricted and indirect. More-
over, there is a notable lack of data on effects of
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variation in testosteroneon female reproductive de-
velopment and HPO function, which may be
caused by the misconception that androgens are
only or mainly salient to the reproductive physiol-
ogyofmales (e.g.,Gibsonet al., 2020;Prizant et al.,
2014; Simitsidellis et al., 2018). Little data have
also been collected on phenotypes associated with
endometriosis that do not have relatively direct
medical impacts, and research on this disease has
not been guided by hypotheses informed by evolu-
tionarybiology.
The hypothesis proposed and evaluated here

makes a large number of testable predictions, that
should help to spur progress in understanding the
etiology of endometriosis, the roles of recent
human evolution in risks of common reproductive
diseases, and the ultimate and proximate causes of
variation in female primary and secondary sexual
traits. Doing so effectively, however, will require
integration of approaches and data from gynaecol-
ogy, endocrinology, physiology, genetics, behav-
ior, and evolutionary biology. Themost direct tests
of the hypothesis will come from studies of male
preference for higher expression of heritable traits
in females whose development and expression are
associatedwith relatively low testosterone (or indi-
cators thereof, such as AGD), correlates of higher
endometriosis risk (though not endometriosis
itself), and higher female fecundity. Additional ro-
bust testswill come fromevaluating associations of
AGD, or serum testosterone, with sexually dimor-
phic human traits including facial features, body
shape, muscularity, and vocal pitch. As described
above and shown in Figure 1, the traits preferred by
males will include some that are directly related to
higher female reproduction and reproductive value
(owing to strong functional links with steroid hor-
mone levels in development and adulthood), and
some (e.g., facial shape or vocal pitch) that are
related tohigher female reproductionand reproduc-
tive value only indirectly, due to their dependence
on levels of the same steroids that directly affect
reproduction.
With regard to preventing and treating endome-

triosis, a primary insight gained here is that its risk
is apparently driven by low testosterone and “pro-
female,” “anti-male” gene expression during early
in utero development, that program the HPO axis
and the expression of female primary and second-
ary sexual traits, leading to highly female-biased,
maladaptive physiological extremes. As such, en-
dometriosis shouldbeconsideredas adevelopmen-
tal-physiological disorder affecting all major

bodily systems, with pervasive effects from rela-
tively low prenatal and postnatal testosterone that
differentially program and orchestrate the HPO
axis (Dinsdale&Crespi, 2021). If further supported
by targetedwork, thisparadigmwouldprovidea ro-
bust framework for clinical studies, prevention, and
treatmentof endometriosis (Dinsdale et al., 2021).
The model for the evolution of endometriosis

risk proposed and evaluated here fits closely with
Fisher's (1915) scenario for the roles of natural and
sexual selection in the evolution of sexual prefer-
ence.Asnotedabove,Fisherdescribed threephases
in the history of secondary sexual traits: an initial
phasewhere the trait expression is favored by natu-
ral selection, a secondphasedrivenby sexual selec-
tion, by mate choice, for higher levels of the trait,
and a third phasewhere the sexual selection advan-
tages of the trait expression become balanced by
natural selectionagainst it, leading toequilibrium.
For endometriosis, the initial, natural selection

phase would involve fertility and fecundity advan-
tages associated with the evolution of lower prena-
tal andpostnatal testosterone (andhigher estradiol),
or other factors that pushdevelopment and function
in a “more female” direction. During the second
phase, sexual selection (male preference) for phe-
notypes directly and indirectly associated with
thesefitness advantageswould drive trait evolution
in the same direction as natural selection. And in
the third phase, trait expressionwould become suf-
ficiently extreme to incur naturally selected costs,
here, the fecundity-reducing impacts of endometri-
osis itself, aswell asprematureovarian failure.
Humans are highly unusual among primates in

the nature of the male mate preferences that have,
by the model described here, mediated the evolu-
tionof female secondary sexual traits and riskofen-
dometriosis. Among common chimpanzees, for
example, males prefer to mate with older females,
who are demonstrably better at successfully raising
offspring (Muller et al., 2006). In many other pri-
mates, males prefer to mate, if they are able, with
high-status, more-dominant females, who tend to
have higher reproductive success (see Kobayashi,
2017). The closest non-human analog to human
female secondary sexual traits appears to be the
sexual swellings of some primates that indicate, to
some degree, the timing of ovulation; such swel-
lings are found especially among species that live
in largemulti-male, multi-female groupswith non-
seasonal reproduction (Nunn, 1999; van Schaik et
al., 1999), as do humans. Female sexual swellings
signal good physiological condition and high
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fitness as a mate as well as high fecundability
(Huchard et al., 2009; Street et al., 2016), and they
may thus resemble secondary sexual traits in
humans to someextent.
The finding that extremes of sexually dimorphic

reproductive development appear to increase risk
of disease in females raises the question ofwhether
this type of effect also manifests in males. By the
results discussed above, reproductive performance
appears to be maximized in females under condi-
tions of relatively low (below average, but not
extremely low) prenatal and postnatal testosterone:
especially low testosterone is linked with endome-
triosis, and relativelyhigh testosterone is associated
with lower fertility, lower fecundity, and reduced
preference by males, as well as with symptoms of
PCOS (Figure 5). By contrast, formales, reproduc-
tive performance may be maximized under condi-
tions of relatively high (above average) prenatal
and postnatal testosterone, given, for example,
extensive evidence for female choice, and male-
male competition threat value, of relatively highly
developed male traits such as low vocal pitch,
more-male facial features, and highmuscularity (e.
g., Marcinkowska et al., 2019; Puts et al., 2012).
The costs of especially high postnatal testosterone
in men have yet to be analyzed in detail, but, from
studies of humans and non-human primates, they
may include increasedmetabolic rates, higher food
requirements, immunosuppression, and higher
risks of some cancers (Lassek & Gaulin, 2009;
Muehlenbein & Bribiescas, 2005; Muehlenbein &
Watts, 2010;Trumbleet al., 2016).
Lower prenatal testosterone in males, as evi-

denced by shorter AGDs, has been consistently
associated with reduced testis and phallus size,
lower spermcounts and fertility, lowerpostnatal se-
rum testosterone, and a higher risk of hypospadias
(the urethra opening on the underside the penis
rather than the tip) and cryptorchidism (failure of
one or both testis to descend; reviews in Dean &
Sharpe, 2013; Hua et al., 2018; Thankamony et al.,
2016), all or most of which are probably related to
lower male fitness. Lower prenatal testosterone as
indexed by higher digit ratios in males has also
been linkedwith reducedmuscular andathletic per-
formance across a large set of studies (Crewther et
al., 2015; Manning et al., 2014). In turn, especially
low postnatal testosterone is strongly associated
with visceral obesity and type 2 diabetes in males,
in striking contrast to the associations of high post-
natal testosteronewith these traits in females (Esco-
bar-Morreale et al., 2014; Navarro et al., 2015),

which appear to be mediated by prenatal high-tes-
tosterone effects on development (Rae et al., 2013;
Rolandet al., 2010).
The recent evolutionary trajectory of secondary

sexual traits in womenwas characterized by Fisher
(1915, p. 189) as involving “canons of beauty,”
whereby a set of correlated female traits has
evolved that arepreferredbymalesdue toboth their
direct developmental and physiological linkages
with reproductive success and reproductive value
(such as for lowWHR) and their indirect linkswith
fitness viamate choice (such as for facial and vocal
features indicative of low testosterone; Figure 1).
Thenatureof thisevolutionary trajectory in females
dovetails in an intriguing way with theory and data
for the evolution of human self-domestication,
which also involves effects from lower testoster-
one, higher oxytocin, reduced pigmentation, neo-
tenic “more-female” facial features, and more-
frequent estrus cycles (Wilkins et al., 2014). Given
the diversity of ecological, reproductive and social
selective pressures affecting human populations
throughout our history and across the world, recent
evolutionary trajectories are, however, expected to
be population-specific to a considerable extent,
leading,asDarwin(1871/1981)proposed, to sexual
selection also generating much of the observed di-
versity in sexual dimorphism, and female second-
ary sexual traits, acrosshumanpopulations.
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